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Appendix

idhgilﬁﬁdinal oscillations of a linear chain with nearest 11eighb01‘"'interactions and free

ends
The mechanical system of N mass points of mass M distributed along the r-axis is de-

fined by the Lagrangian (K = 2b%)
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=2

Equilibrium positions of the points are z, = na, n = 1,2,... N. In terms of longinudinal

displacements from equilibrium positions 9, = &, — na the Lagrangian reads
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The corresponding Lagrange equations are

Mtpy = Kby — 2+ 4], n=2,... N-1, (N
My = Khn~1 48], Mun=K{& —yn+iUn_1] ‘_;,/"'/
The whole system of equations forn = 1, 2, ..., N can be written in the form (1), if fictitious
points g, Ty ate introduced with the boundary conditions of equal displacements
W = 11, Yt = ¥n,
corresponding to free ends, or
Iy — Ip = a, T4y — Iy = Q.
Summarizing, we are looking for the general solution (1), ..., ¥n{(t) of the svstem of
N linear ordinary differential equations
. K _ ; _
wn = "M[T.bn+1 = 211!)11 + 7~,L'-n—1]: o= j—a 23 s :—"\H (2)
subject to boundary conditions
Yo = i, Ynil = Ung {3) e’



Any solution can be written as a linear combination of fundamental solutions — the modes
—- 1n which all degrees of freedom oscillate with the same frequency,

Yult) = Kpconiit, HB=12.:

(or z,(t) = X,, cos wi+na). Substitution into (2), (3) leads to the system of linear difference
equations for the amplitudes X,

Mu?
Kol By =B 1rij")}(ﬂ, n=12. N )
subject to linear boundary conditions
Xo = X, Xy = Xn. (3)

According to general theory there are N fundamental solutions, each given up to an arbitrary
multiplier. These solutions can be determined like the standing waves A sinkz + B cos kz
on the continuous spring, but testricted to discrete positions z = na. Our starting point are
the identities

sin k(n + 1)a + sin k{n — 1)a = 2sin kna cos ka,

cosk{n+ 1)a + cosk{n — 1)a = 2cos kna cos ka,

implying that
X, = Asinkna + Bcoskna

solves (4), if a nonlinear dispersion relation

Muw?
2 — 1;‘ = 2coska
holds, 1.e. % .
w(k)2=2%(1 — coska) =4H sinz—z-a. (6)

Admissible values of & are determined from the boundary conditions (5). The resulting
N modes can be obtained from a simple graphical representation and are given (up to a
multiplier) by

X :coskmm—%)a, m=0,1,2,....N -1, Q)
where
—__— ma
™= e ®)
]jence K
wfy = wlkn)” = 45 sin® g{f )
General solution of (2), (3) depends on 2. integration constants A1, ..., Ax_1, ©1,..., ©yn-1,
Vv, B
N=1
Ua(t) = D AnXI cos(wint + @) + Vi + B; (10)
m=1
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here the non-oscillating ”zero mode” qpﬂ))(t) = Vit + B corresponds to free center-of-mass
motion of the whole chain.

It 1s straightforward to verify that our solutions (7), (8) satisfy the boundary conditions
(S)forallm=0,1,2,... . N —1;

m m 1 1
Xl( - X{g ) = cos k(1 — E)a — 08 k(0 — g)a. ),

m my . 1 1
X‘(?V—.Bl s XJS\T b= cos Fm (N +1— 5_)& — cos k(N — 5)5;, =

st 4 :rmr) ( mir
= cos{mm + —) — cos(mr — —} =
2N T 2N
. .omm
. == —251nm?r51n2N=0.
If 1 denotes the column vector with components ¢, n = 1, ... . N, equations of motion
(2) can be written in matrix form
Y+ B =0.
The matrix B with matrix elements By, = L 6_“_&-2;;& =0 describes the interaction,
1 -1
K -1 2 -1
IB = e i "
M
2 -1
-1 1

For the modes 1 (t) = X coswt, where X is the column vector with components X, equa-
tions (4) take the matrix form
(B-uwHX =0

or the form of the eigenvalue problem
BXx{m = 2 x{m),

It is a well-known fact that the eigenvectors X, X ™) belonging to different eigenvalues
wi, # w2, are orthogonal in the sense of the inner product

N
(), X = XX <.
n=1

After normalization 37V (™2 = 1 we have
(X(m), X{m’}) = Gt

In order to diagonalize B, the matrix X is introduced, whose columns are the normalized
eigenvectors, X = X™. This matrix is orthogonal, X”X = [, and the eigenvalue problem
takes the form

BX = XL,
where L = diag(wj = 0,wf, ..., w}_,), implying diagonalization of B by X, _
X7BX = XTXL = L. 2= Ky
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