Matematická analýza B3 (01MAB3)
Zkratka | 01MAB34 | |
---|---|---|
Kredity | 7 kr. | |
Přednášející | Mgr. Milan Krbálek, PhD. | |
Semestr | zimní | letní |
Hodiny | 2+4 | 2+4 |
Zakončení | z+zk | z+zk |
Obecně
MAB3 navazuje a rozšiřuje pojmy z MAB2 (posloupnosti a řady), poté se probírají dlouho očekávané diferenciální rovnice. V prosinci se na probírají kvadratické formy a plochy, hlavně v R2 a R3. Poslední téma tvoří metrické, normované a Hilbertovy prostory. Přednášky jsou zábavné a velmi přínosné. Lze na nich pořídit kvalitní zápisky. Účast na nich není povinná,ale je náhodně sledována. Milan Krbálek je jedním z nejlepší přednášející matematických předmětů na naší fakultě. Dokáže do přednášky zapojit i velkou část studentů a donutí tak nad probíranou látku přemýšlet již při přednášce.
Obsah předmětu
- Posloupnosti funkcí - obor konvergence, kritéria bodové a stejnoměrné konvergence, spojitost, limita, derivace a integrace posloupnosti funkcí.
- Řady funkcí - obor konvergence, kritéria bodové a stejnoměrné konvergence, spojitost, limita, derivace a integrace řady funkcí, mocninné řady, rozvoj funkce v řadu, Taylorova věta.
- Obyčejné diferenciální rovnice - rovnice prvního řádu (metoda integračního faktoru, Bernouliova rovnice, rovnice se separovanými proměnnými, homogenní a exaktní rovnice) a rovnice vyšších řádů (fundamentální systém řešení diferenciální rovnice, snížení řádu diferenciální rovnice, metoda variace konstant, lineární diferenciální rovnice s konstantními koeficienty a speciální pravou stranou, Eulerova diferenciální rovnice). Prostor všech řešení lineární diferenciální rovnice s nulovou pravou stranou.
- Kvadratické formy a kvadratické plochy - regularita, definitnost, normální tvar, hlavní a vedlejší signatura, polární báze, klasifikace kuželoseček a kvadrik.
- Metrické, normované a Hilbertovy prostory - metrika, norma, skalární součin, pojem okolí, vnitřní, vnější, hraniční, izolovaný a hromadný bod množiny, derivace a hranice množiny. Oblast a kompaktní množina. Limita posloupnosti v obecném metrickém prostoru. Cauchyovskost a vztah k limitě. Úplnost prostoru. Konvexnost množin.
Podmínky udělení zápočtu - bodový systém
Kritériem pro udělení zápočtu je dostatek bodů. Celkově lze získat 100 bodů (+ další bonusové), na bezproblémový zápočet je jich potřeba 50. Studenti v intervalu <30,50) bodů mají ještě druhou šanci v podobě opravné písemky, kterou musí napsat na 50%. Obtížnost opravné písemky by měla být o něco menší.
- Pravidelná účast na cvičeních (max 3 absence,nelze omlouvat). Za každou absenci nad limit se strhávají 3 body.
- Na cvičení se píše 5 malých písemek (na každý probíraný blok jedna). Z každé jde získat maximálně 4 body. Písemka je většinou tvořena teoretickou otázkou (definice, věta bez dokazování) hodnocenou 1 bodem a příkladem za zbylé 3 body.
- V průběhu semestru se píšou 2 zápočtové písemky. První se píše v půlce listopadu a obsahuje posloupnosti a řady funkcí. Volitelně může ještě obsahovat diferenciální rovnice 1.řádu. Druhá obsahuje zbytek látky s důrazem na diferenciální rovnice. Z každé písemky lze získat po 40 bodech.
- Další body jsou přidělovány: za aktivitu na cvičeních, na přednáškách, nalezení chyb ve skriptech.
Za každou pětici bodů získanou